
N92-15870

1991

NASA/ASEE SLq_KER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CLNTER

THE UNIVERSITY OF ALABAMA

DEVELOPMENT OF A CALIBRATED SOFTWARE RELIABILITY MODEL
FOR

FLIGHT AND SUPPORTING GROUND SOFTWARE

FOR

AVIONIC SYSTEMS

Prepared By:

Academic Rank:

Institution:

Stella Lawrence

Professor

Bronx Community

College,

Department of

Engineering

Technologies

NASA/MSFC:

Office:

Division:

Branch:

MSFC Colleague:

Contract No.:

Information &

Electronic

Systems Laboratory

Software & Data

Management

Systems Software

Kenneth Williamson

NGT-01-O08-021

The University of
Alabama

T



-

V



The object of this project was to develop and calibrate

quantitative models for predicting the quality of software.

Reliable flight and supporting ground software is a highly

important factor in the successful operation of the space

shuttle program. Reliability is probably the most important

of the characteristics inherent in the concept of "software

qua___ Z. It is the probabi!Ity of failure free operation of
a computer program for a specified time and environment.

A software reliability mode! specifies the general form

of the dependence of the failure process on the principal

factors that affect it: fault introduction, fault removal,

and the environment.

Since some of the factors involved in the preceding are

probabilistic in nature and operate over time, software

reliability models are generally formulated in terms of random

processes. Analytic expressions can be derived for the

averaqe number of failures experienced at any point in time,

the average number of failures in a time interval, the failure

intensity at any point in time, the probability distribution
of failure intervals.

A good software reliability model gives good predictions

of future failure behavior, computes useful quantities, is

simple, widely applicable, and based on sound assumptions.

Prediction of future failure behavior assumes that the values

of model parameters will not change for the period of

prediction.

The models use the Poisson process to model software

occurrence, either the HPP (Homogeneous Poisson Process) or

NHPP (Nonhomogeneous Poisscn Process).

The models used in the present study consisted of: I.

SME_FS (Statistical Mode_ng and Estimation of Reliability
Functions for Software). There are ten models in SMERFS:

error count models (generalized Poisson model, NHPP model,

Brooks and Motley, Schneidenwind model, S-shaped reliability

growth model) and rime'between-error models (Littlewood and

Verrall Bayesian model, Musa execution time model, geometric

model, NHPP model for time between error occurrence, Musa

logarithmic Poisson execution time model), 2. Kennet_

Williamson's NHPP Binomial _ype software reliability model,-
3. Goel-Okumoto NHPP model.

The software utilized consisted of the IMCE (Image Motion

Compensation Electronics) software flight data, BATSE (Burst

Transient Source Experiment, Gamma Ray Observatory) software,

and a further program will also utilize POCC (Payload

Operations Control Center for the Space Shuttle), Payload

Checkout Unit Software for the Space Shuttle and HIT software

(space shuttle telemetry systems).

Before discussing the results obtained with the models

used in the present study, it must be kept in mind that

software reliability modeling is just one of many tools. It

cannot provide all the answers to the problems managers must
face.

T-I



It must be taken as a bit of information, which along with
others, is helpful in making a realistic judgement concerning
a program's status.

For a first run, the results obtained in modeling the
cumulative number of failures versus execution time showed
fairly good results for our data. Plots of cumulative
software failures versus calendar weeks were made and the
model results were compared with the historical data on the
same graph. If the model agrees with actual historical
behavior for a set of data then there is confidence in future
predictions for this data.

Considering the quality of the data, the models have

given some significant results, even at this early stage.
With better care in data collection, data analysis, recording

of the fixing of failures and CPU execution times, the models

should prove extremely helpful in making predictions regarding

the future pattern of failures, including an estimate of the

number of errors remaining in the software and the additional

testing time required for the software quality to reach

acceptable levels. _ _
It appears that there is no one "best" model for all

cases. It is for this reason that the aim of this project was

to test several models. One of the recommendations resulting

from this study is that great care must be taken in the

collection of data. When using a model, the data should

satisfy the model assumptions.

As previously stated, the data has to have the ability to

correctly identify and measure what is desired. The data

provided must satisfy the following: I. It should be

correctly recorded. 2. It should consist of samples that are

random in nature. 3. It should be stated in CPU hours per

failure, i.e. state CPU time as well as the date of the

error. 4. All errors should be accurate.

Reliability should improve if the field software is

corrected as failures occur. What about repeated failures due

to the same fault? Fixing of faults leading to failures has

to be properly recorded and properly attended to. The record
of failures must be obtained for a sufficient length of time.

Recent theory indicates that the failure intensity function

probably decreases exponentially with time, i.e. a plot of the

rate of occurrence of failures versus the number of faults

found decreased asymptotically to zero.

There are also several recommendations regarding the use

of the models: 1. The models require the insertion of

various parameters. The models should be run with various

values of these parameters, which should be carefully chosen

for optimum results. 2. The data should be modeled

piecewise, in addition to running the models for the total
data. 3. Various forms of data input are provided including

time between failure data and error count data and the model

may yield different results for different types of data input. V

T-2



4. The length of the trial should be a proportion of the
expected life of the system; predictions made from a very
small set of data tend to be poor. 5. The rate of
manifestation of errors varies greatly from fault to fault,
models which treat all faults as having the same rate may lead
to optimistic bias estimates. Perhaps, some type of analysis
should be performed to classify failures by severity, what
kind of failure is it and is it critical or not?

To sum up the preliminary trials indicate that the models
tested show much promise and that with their proper use and
tailoring they are expected to yield an accurate reliability
prediction for the flight and supporting ground software of
embedded avionic systems.

REFERENCES

I. Musa, John S., Iannino, A., and Okumoto, Kazuhira,

Software Reliability Measurement, Prediction, Application,

McGraw-Hill Book Company, New York, 1987.

2. Farr, William H., Strategic Systems Department,

Naval Systems Warfare Center, Dahlgren, VA 22448-5000, Smith,

Oliver D., EG & G Washington Analytical Service Center, Inc.,

1900 Dahlgren Road, Dahlgren, VA 22448, Sponsored by

Strategic Systems Programs, Washington, DC 20376-5002,

Statistical Modeling and Estimation of Reliability Functions

for Software (SMERFS), Report No. NSWC TR 84-373, Revision

No. 2, March, 1991.

3. Wil!iamson, Kenneth, Non-Homogeneous Poisson Process

Binomial Type Software Reliability Model, Preliminary Edition,

EB41/Software & Data Management Division, EB42/Systems

Software Branch, Marshall Space Flight Cente6, Huntsville, AL

35811, July, 1991.

4. Vienneau, Robert, Computerized Implementation of the

Goel-Okumoto NHPP Software Reliability Model, ITT Research

Institute, Beeches Technical Campus, Route 26N, Rome, N.Y.

13440, November, 1987.

T-3



V


